Sabtu, 14 April 2012

tata surya


SISTEM TATA SURYA DAN
PROSES PEMBENTUKAN BUMI
Tugas GEOGRAFI
Disusun oleh:
Nama : Widha Mutiara Rizky
No.Absen : 34
Kelas : X.6

SMA NEGERI 3 BOYOLALI
2011/2012
HALAMAN PENGESAHAN


Makalah ini telah disetujui dan disahkan oleh pembimbing pada :
           
                        Hari        :
                        Tanggal :




                                                                                                Disetujui
 Pembimbing


Halimah S.pd
NIP:



MOTTO


1.Banyak berkarya tanpa menuntut jasa dan menyelamatkan  kesejahteraan dunia
2.Jadikanlah  kegagalan  sebagai   contoh   untuk   mencapai    keberhasilan
3.Tandanya orang yang luhur budinya,halus dan  suka  memberikan pertolongan      dengan sepenuh hati
4.Kemenangan harus di sertai denga pengorbanan
5.Disiplin adalah kunci seseorang untuk meraih keberhasilan
6.Jangan menyerah pada kesulitan sebelum itu di lakukan
7.Pembuktian diri tercapai hanya dengan tantangan
8.Menetapkan tujuan adalah manusia diri









KATA PENGANTAR
Assalamu'alaikum Wr.Wb


     Dengan memanjatkan kehadirat Allah SWT,saya dapat menyelesaikan makalah ini tanpa halangan suatu apapun.
       Pembuatan makalah ini sebagai lanjutan dari tugas yang diberikan oleh Ibu Halimah selaku guru geografi dan pembimbing dalam penbuatan makalah ini.dan saya ingin berterimakasih kepada Ibu Halimah dan semua pihak yang telah membantu dalam pembuatan makalah ini.
       Saya masih  mempunyai  banyak  kekurangan dalam  penulisan  makalah ini, maka  saya  masih  mengharapkan kritik dan saran ,baik  tertulis maupun lisan dari pembaca.Terimakasih.


Wassalamu'alaikum Wr.Wb



                                                        Boyolali,     September 2011


                                                                    Widha Mutiara Rizky


DAFTAR ISI

HALAMAN JUDUL........................................................................          i
HALAMAN PENGESAHAN..............................................................         ii MOTTO.....................................................................................        iii
KATA PENGANTAR......................................................................        iv
DAFTAR ISI................................................................................        v
            PENDAHULUAN............................................................................
            ISI.............................................................................................
            PENUTUP.....................................................................................
            DAFTAR PUSTAKA........................................................................ 

















PENDAHULUAN
TATA SURYA
Tata surya merupakan suatu sistem yang terdiri alas matahari dan benda-benda langit yang beredar mengelilinginya. Karena diedari oleh benda-benda langit di sekelilingnya. matahari dikatakan sebagai pusat tata surya. Dalam peredarannya, benda-benda langit tersebut mempunyai lintasan edar tertentu yang berbentuk elips dengan matahari terletak pada salah satu fokusnya. Peredaran benda langit mengelilingi matahari disebut revolusi. Adapun bidang edar yang terbentuk oleh bumi disebut ekliptika. Dalam revolusinya, anggota tata surya pada suatu saat berada pada jarak yang paling dekat dengan matahari (periheIium) dan pada saat yang lain berada pada jarak yang paling jauh dari matahari (aphelium). Hal itu dijelaskan oleh Johannes Kepler seperti berikut.
  1. Lintasan planet (anggota tala surya) berbentuk elips dengan matahari terletak pada salah satu titik fokusnya.
  2. Garis hubung planet dan matahari menyapu luasan yang sama dalam waktu yang sama (AMB = CMD).
Artinya, gerak planet akan cepat jika dekat matahari dan lambat jika jauh dari matahari. Penjelasan Kepler tersebut selanjutnya disebut hukum Kepler. Penjelasan pertama disebut hukum I Kepler, sedangkan penjelasan kedua disebut hukum II Kepler. Selain kedua hukum itu, sebenarnya masih ada hukum III Kepler. Hukum ini menjelaskan perbandingan jarak antara planet dan matahari. Mengapa gerakan planet-planet sangat teratur? Peredaran planet mengitari matahari dikendalikan oleh gaya tarik-menarik anrara planet dan matahari yang disebut gaya gravitasi. Jika jarak antara planet dan matahari makin dekat, gaya gravitasi yang terjadi di antara keduanya makin besar. Akibatnya. gerak revolusi planet makin cepat. Sebaliknya jika jarak antara matahari dan planet makiu jauh. gaya gravitasi yang terjadi di antara keduanya makin kecil. Akibatnya. gerak revolusi planet makin lambat. Hal ini sesuai dengan hukum Kepler.
Mengapa planet-planet dan anggota tata surya lainnya beredar mengelilingi matahari? Massa matahari sangat besar. sekitar 333.000 kali massa bumi. Adapun massa planet terbesar (Yupiter) hanya sekitar 300 kali massa bumi. Jadi, massa matahari hampir-hampir merupakan massa keseluruhan tata surya. Perbedaan massa yang sangat besar inilah yang menyebabkan seluruh anggota tata surya beredar mengelilingi matahari.
BUMI
Bumi adalah planet tempat tinggal seluruh makhluk hidup beserta isinya. Sebagai tempat tinggal makhluk hidup, bumi tersusun atas beberapa lapisan bumi, bahan-bahan material pembentuk bumi, dan seluruh kekayaan alam yang terkandung di dalamnya. Bentuk permukaan bumi berbeda-beda, mulai dari daratan, lautan, pegunungan, perbukitan, danau, lembah, dan sebagainya. Bumi sebagai salah satu planet yang termasuk dalam sistem tata surya di alam semesta ini tidak diam seperti apa yang kita perkirakan selama ini, melainkan bumi melakukan perputaran pada porosnya (rotasi)  dan bergerak mengelilingi matahari (revolusi) sebagai pusat sistem tata surya. Hal inilah yang menyebabkan terjadinya siang malam dan pasang surut air laut. Oleh karena itu, proses terbentuknya bumi tidak terlepas dari proses terbentuknya tata surya kita.
















ISI
A.SISTEM TATA SURYA
Tata Surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya.
Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yang terluar.
Berdasarkan jaraknya dari matahari, kedelapan planet Tata Surya ialah Merkurius (57,9 juta km), Venus (108 juta km), Bumi (150 juta km), Mars (228 juta km), Yupiter (779 juta km), Saturnus (1.430 juta km), Uranus (2.880 juta km), dan Neptunus (4.500 juta km). Sejak pertengahan 2008, ada lima objek angkasa yang diklasifikasikan sebagai planet kerdil. Orbit planet-planet kerdil, kecuali Ceres, berada lebih jauh dari Neptunus. Kelima planet kerdil tersebut ialah Ceres (415 juta km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima), Pluto (5.906 juta km.; dulunya diklasifikasikan sebagai planet kesembilan), Haumea (6.450 juta km), Makemake (6.850 juta km), dan Eris (10.100 juta km).
Enam dari kedelapan planet dan tiga dari kelima planet kerdil itu dikelilingi oleh satelit alami, yang biasa disebut dengan "bulan" sesuai dengan Bulan atau satelit alami Bumi. Masing-masing planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.
Asal usul
Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, di antaranya :
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772) tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.
Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan matahari, pada masa awal pembentukan matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan matahari, dan bersama proses internal matahari, menarik materi berulang kali dari matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.
Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet. Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi. Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.
Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.

Sejarah penemuan
Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.

Model heliosentris dalam manuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.
Struktur

Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.
Orbit-orbit Tata Surya dengan skala yang sesungguhnya
Illustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya. Yupiter dan Saturnus, dua komponen terbesar yang mengedari matahari, mencakup kira-kira 90 persen massa selebihnya.
Hampir semua objek-objek besar yang mengorbit matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling matahari bergerak mengikuti bentuk elips dengan matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan matahari dinamai perihelion, sedangkan jarak terjauh dari matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit, atau bulan. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.
Terminologi
Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa. Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.[8] Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya. Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris. Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid". Sisa objek-objek lain berikutnya yang mengitari matahari adalah benda kecil Tata Surya.
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida, memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.
ZONA PLANET

MATAHARI

Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.
Dipercayai bahwa posisi matahari pada deret utama secara umum merupakan "puncak hidup" dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang.
Matahari secara metalisitas dikategorikan sebagai bintang "populasi I". Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium ("metal" dalam sebutan astronomi) dibandingkan dengan bintang "populasi II".Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini. Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.
Medium antarplanet

Lembar aliran heliosfer, karena gerak rotasi magnetis matahari terhadap medium antarplanet.
Di samping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin matahari. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam, menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebut medium antarplanet. Badai geomagnetis pada permukaan matahari, seperti semburan matahari (solar flares) dan lontaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa. Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), sebuah spiral yang terjadi karena gerak rotasi magnetis matahari terhadap medium antarplanet. Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin matahari. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa. Interaksi antara angin matahari dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.
Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet. Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.
Tata Surya bagian dalam
Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.
Planet-planet bagian dalam
Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai bulan dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
Merkurius
Merkurius (0,4 SA dari matahari) adalah planet terdekat dari matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin matahari.]Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal matahari.
Venus
Venus (0,7 SA dari matahari) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi.
Bumi
Bumi (1 SA dari matahari) adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diamati memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen. Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
Mars
Mars (1,5 SA dari matahari) berukuran lebih kecil dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi. Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.
Sabuk asteroid
Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah objek Tata Surya yang terdiri dari batuan dan mineral logam beku.
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter.
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygiea mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik.
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer. Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi. Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10−4 m disebut meteorid.
Ceres

Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi. Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.
Kelompok asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. Bulan asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari bulan-bulan planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi.
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.
Tata Surya bagian luar
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut "es" dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.
Planet-planet luar

Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala
Keempat planet luar, yang disebut juga planet raksasa gas (gas giant), atau planet jovian, secara keseluruhan mencakup 99 persen massa yang mengorbit matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es. Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.
Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas. Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Yupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja. Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
 Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari matahari dengan bujkuran poros 90 derajad pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas. Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus. Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair. Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.
Komet
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal. Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit. Komet tua yang bahan volatilesnya telah habis karena panas matahari sering dikategorikan sebagai asteroid.





















B.TEORI PEMBENTUKAN BUMI

Bumi adalah planet tempat tinggal seluruh makhluk hidup beserta isinya. Sebagai tempat tinggal makhluk hidup, bumi tersusun atas beberapa lapisan bumi, bahan-bahan material pembentuk bumi, dan seluruh kekayaan alam yang terkandung di dalamnya. Bentuk permukaan bumi berbeda-beda, mulai dari daratan, lautan, pegunungan, perbukitan, danau, lembah, dan sebagainya. Bumi sebagai salah satu planet yang termasuk dalam sistem tata surya di alam semesta ini tidak diam seperti apa yang kita perkirakan selama ini, melainkan bumi melakukan perputaran pada porosnya (rotasi) dan bergerak mengelilingi matahari (revolusi) sebagai pusat sistem tata surya. Hal inilah yang menyebabkan terjadinya siang malam dan pasang surut air laut. Oleh karena itu, proses terbentuknya bumi tidak terlepas dari proses terbentuknya tata surya kita.

Setelah memahaminya, inilah proses pembentukan bumi dari beberapa teori:

1.Theory Big bang

Teori ini adalah yang paling terkenal gan.
Berdasarkan Theory Big Bang, proses terbentuknya bumi berawal dari puluhan milyar tahun yang lalu. Pada awalnya terdapat gumpalan kabut raksasa yang berputar pada porosnya. Putaran yang dilakukannya tersebut memungkinkan bagian-bagian kecil dan ringan terlempar ke luar dan bagian besar berkumpul di pusat, membentuk cakram raksasa. Suatu saat, gumpalan kabut raksasa itu meledak dengan dahsyat di luar angkasa yang kemudian membentuk galaksi dan nebula-nebula. Selama jangka waktu lebih kurang 4,6 milyar tahun, nebula-nebula tersebut membeku dan membentuk suatu galaksi yang disebut dengan nama Galaksi Bima Sakti, kemudian membentuk sistem tata surya. Sementara itu, bagian ringan yang terlempar ke luar tadi mengalami kondensasi sehingga membentuk gumpalan-gumpalan yang mendingin dan memadat. Kemudian, gumpalan-gumpalan itu membentuk planet-planet, termasuk planet bumi.

Dalam perkembangannya, planet bumi terus mengalami proses secara bertahap hingga terbentuk seperti sekarang ini. Ada tiga tahap dalam proses pembentukan bumi, yaitu:

1. Awalnya, bumi masih merupakan planet homogen dan belum mengalami perlapisan atau perbedaan unsur.
2. Pembentukan perlapisan struktur bumi yang diawali dengan terjadinya diferensiasi. Material besi yang berat jenisnya lebih besar akan tenggelam, sedangkan yang berat jenisnya lebih ringan akan bergerak ke permukaan.
3. Bumi terbagi menjadi lima lapisan, yaitu inti dalam, inti luar, mantel dalam, mantel luar, dan kerak bumi.

Perubahan di bumi disebabkan oleh perubahan iklim dan cuaca.

2. Teori Kabut Kant-Laplace

Sejak jaman sebelum Masehi, para ahli telah banyak berfikir dan melakukan analisis terhadap gejala-gejala alam. Mulai abad ke 18 para ahli telah memikirkan proses terjadinya Bumi.
Ingatkah kamu tentang teori kabut (nebula) yang dikemukakan oleh Immanuel Kant (1755) dan Piere de Laplace (1796)? Mereka terkenal dengan Teori Kabut Kant-Laplace. Dalam teori ini dikemukakan bahwa di jagat raya terdapat gas yang kemudian berkumpul menjadi kabut (nebula). Gaya tarik-menarik antar gas ini membentuk kumpulan kabut yang sangat besar dan berputar semakin cepat. Dalam proses perputaran yang sangat cepat ini, materi kabut bagian khatulistiwa terlempar memisah dan memadat (karena pendinginan). Bagian yang terlempar inilah yang kemudian menjadi planet-planet dalam tata surya.

3. Teori Planetesimal

Seabad sesudah teori kabut tersebut, muncul teori Planetesimal yang dikemukakan oleh Chamberlin dan Moulton. Teori ini mengungkapkan bahwa pada mulanya telah terdapat matahari asal. Pada suatu ketika, matahari asal ini didekati oleh sebuah bintang besar, yang menyebabkan terjadinya penarikan pada bagian matahari. Akibat tenaga penarikan matahari asal tadi, terjadilah ledakan-ledakan yang hebat. Gas yang meledak ini keluar dari atmosfer matahari, kemudian mengembun dan membeku sebagai benda-benda yang padat, dan disebut planetesimal. Planetesimal ini dalam perkembangannya menjadi planet-planet, dan salah satunya adalah planet Bumi kita.


Pada dasarnya, proses-proses teoritis terjadinya planet-planet dan bumi, dimulai daribenda berbentuk gas yang bersuhu sangat panas. Kemudian karena proses waktu dan perputaran (pusingan) cepat, maka terjadi pendinginan yang menyebabkan pemadatan (pada bagian luar). Adapaun tubuh Bumi bagian dalam masih bersuhu tinggi.

4. Teori Pasang Surut Gas

Teori ini dikemukakan leh jeans dan Jeffreys, yakni bahwa sebuah bintang besar mendekati matahari dalam jarak pendek, sehingga menyebabkan terjadinya pasang surut pada tubuh matahari, saat matahari itu masih berada dalam keadaan gas. Terjadinya pasang surut air laut yang kita kenal di Bumi, ukuranya sangat kecil. Penyebabnya adalah kecilnya massa bulan dan jauhnya jarak bulan ke Bumi (60 kali radius orbit Bumi). Tetapi, jika sebuah bintang yang bermassa hampir sama besar dengan matahari mendekati matahari, maka akan terbentuk semacam gunung-gunung gelombang raksasa pada tubuh matahari, yang disebabkan oleh gaya tarik bintang tadi. Gunung-guung tersebut akan mencapai tinggi yang luar biasa dan membentuk semacam lidah pijar yang besar sekali, menjulur dari massa matahari tadi dan merentang kea rah bintang besar itu.


Dalam lidah yang panas ini terjadi perapatan gas-gas dan akhirnya kolom-kolom ini akan pecah, lalu berpisah menjadi benda-benda tersendiri, yaitu planet-planet. Bintang besar yang menyebabkan penarikan pada bagian-bagian tubuh matahari tadi, melanjutkan perjalanan di jagat raya, sehingga lambat laun akan hilang pengaruhnya terhadap-planet yang berbentuk tadi. Planet-planet itu akan berputar mengelilingi matahari dan mengalami proses pendinginan. Proses pendinginan ini berjalan dengan lambat pada planet-planet besar, seperti Yupiter dan Saturnus, sedangkan pada planet-planet kecil seperti Bumi kita, pendinginan berjalan relatif lebih cepat.


Sementara pendinginan berlangsung, planet-planet itu masih mengelilingi matahari pada orbit berbentuk elips, sehingga besar kemungkinan pada suatu ketika meraka akan mendekati matahari dalam jarak yang pendek. Akibat kekuatan penarikan matahari, maka akan terjadi pasang surut pada tubuh-tubuh planet yang baru lahir itu. Matahari akan menarik kolom-kolom materi dari planet-planet, sehingga lahirlah bulan-bulan (satelit-satelit) yang berputar mengelilingi planet-planet. peranan yang dipegang matahari dalam membentuk bulan-bulan ini pada prinsipnya sama dengan peranan bintang besar dalam membentuk planet-planet, seperti telah dibicarakan di atas.

5.TeoriBintangKembar

Teori ini dikemukakan oleh seorang ahli Astronomi R.A Lyttleton. Menurut teori ini, galaksi berasal dari kombinasi bintang kembar. Salah satu bintang meledak sehingga banyak material yang terlempar. Karena bintang yang tidak meledak mempunyai gaya gravitasi yang masih kuat, maka sebaran pecahan ledakan bintang tersebut mengelilingi bintang yang tidak meledak. Bintang yang tidak meledak itu adalah matahari, sedangkan pecahan bintang yang lain adalah yang mengelilinginya









PENUTUP
  Atas berkat Rahmat Allah Yang Maha Esa,akhirnya saya dapat menyelesaikan makalah ini dengan baik.Harapan saya,semoga makalah ini berguna bagi pembaca.
*      KESIMPULAN
Dengan tersusunnya makalah ini,saya menyimpulkan sebagi berikut:
A*)SISTEM TATA SURYA
Tata Surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya.
B*)PROSES PEMBENTUKAN BUMI
  Ada dua kesimpulan yang dapat diambil dari penjelasan mengenai proses terbentuknya bumi, yaitu:
1.      Bumi berasal dari suatu gumpalan kabut raksasa yang meledak dahsyat, kemudian membentuk galaksi dan nebula. Setelah itu, nebula membeku membentuk galaksi Bima Sakti, lalu sistem tata surya.Bumi terbentuk dari bagian kecil ringan yang terlempar ke luar saat gumpalan kabut raksasa meledak yang mendingin dan memadat sehingga terbentuklah bumi.
2.      Tiga tahap proses pembentukan bumi, yaitu mulai dari awal bumi terbentuk, diferensiasi sampai bumi mulai terbagi ke dalam beberapa zona atau lapisan, yaitu inti dalam, inti luar, mantel dalam, mantel luar, dan kerak bumi.
*      SARAN-SARAN
1.dengan lebih mendalami  geografi,artinya kita lebih dapat mengerti tentang tata surya digalaxy bimasakti kita ini.
2.dengan lebih mendalami geografi,kita juga lebih bisa mengerti tentang teori dan proses pembentukan bumi.

Demikian makalah yang telah saya susun,namun saya menyadari dalam penyusunan makalah ini,masih banyak kekurangannya.oleh karena itu,saya mengharapkan kritik dan saran dari pembaca.semoga makalah ini bermanfaat.
























DAFTAR PUSTAKA

Crayonpedia.2008.SISTEM TATA SURYA
Wikipedia.2010.TATA SURYA
Misteri dunia.2010.PROSES PEMBENTUKAN BUMI
Noor, djauhari.2007.PROSES PEMBENTUKAN BUMI DAN TEKTONIK LEMPENG

Tidak ada komentar:

Poskan Komentar